A history-dependent random sequence defined by Ulam
نویسندگان
چکیده
منابع مشابه
On difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کاملdouble sequence spaces defined by orlicz functions
in this paper we introduce some new double sequence spaces using the orlicz function andexamine some properties of the resulting sequence spaces.
متن کاملA Hidden Signal in the Ulam Sequence
The Ulam sequence is defined as a1 = 1, a2 = 2 and an being the smallest integer that can be written as the sum of two distinct earlier elements in a unique way. This gives 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, . . . Ulam remarked that understanding the sequence, which has been described as ’quite erratic’, seems difficult and indeed nothing is known. We report the empirical dis...
متن کاملDependent Lattice Random Elements
In this study, we first introduce the Banach lattice random elements and some of their properties. Then, using the order defined in Banach lattice space, we introduce and characterize the order negatively dependence Banach lattice random elements by the order defined in Banach lattice space. Finally, we obtain some limit theorems for the sequence of order negatively dependence Banach lattice ra...
متن کاملVector Valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak
In this article, we define the vector valued multiple of $chi^{2}$ over $p$-metric sequence spaces defined by Musielak and study some of their topological properties and some inclusion results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1989
ISSN: 0196-8858
DOI: 10.1016/0196-8858(89)90014-6